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1. The need for archiving vaccine samples and other biological materials

Vaccines are one of the most effective public health medicinal products with an excellent 

safety record. Well-planned and implemented immunization programs have profoundly 

reduced the morbidity and mortality of targeted diseases [1], such as the global eradication 

of smallpox [2] and the elimination of poliomyelitis [3] and measles [4] from many regions 

of the world. Since vaccines are usually administered to large populations of healthy people 

including children, frequently with the goal of near universal coverage (under legal mandate 

in some countries), their safety and quality are paramount for public health.

As vaccines are produced using biological materials, there is a need to safeguard against 

potential contamination with adventitious agents. Adventitious agents are defined by the 

World Health Organization (WHO) as microorganisms that may have been unintentionally 

introduced into the manufacturing process of a biological medicinal product [5]: these 
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include bacteria, fungi, mycoplasma/spiroplasma, mycobacteria, rickettsia, protozoa, 

parasites, transmissible spongiform encephalopathy (TSE) agents and viruses. Adventitious 

agents could be inadvertently introduced into a vaccine through starting materials used for 

production, such as cell substrates, porcine trypsin, bovine serum, or any other source 

materials of animal or human origin [6]. Therefore, extensive testing is recommended at 

various stages during vaccine manufacture to demonstrate the absence of adventitious agents 

[5]. Additionally, the incorporation of viral clearance steps in the manufacturing process, 

which evaluate the capability of the manufacturing production process to inactivate and/or 

remove potential viral contaminants [7] can aid in reducing the risk of adventitious agent 

contamination in a biological product; however, for live viral vaccines, aside from possible 

purification of the virus or vector, extensive adventitious agent clearance may not be 

feasible. Hence, the issue of unknown contamination risks of live or vectored vaccines 

requires more stringent safety oversight [5].

In the event that an adventitious agent is detected in a current vaccine, it is important to 

determine its origin, evaluate its potential for human infection, and discern which batches of 

vaccine may have been affected for notification and in order to take risk management action 

plans. To achieve this, it is necessary to have archived samples of the vaccine and ancillary 

components, ideally from developmental through to current batches, as well as samples of 

the biological materials used in the manufacture of the vaccine, since these are the most 

likely sources of an adventitious agent.

Although currently recommended testing has a good record for demonstrating absence of 

adventitious agents in vaccines, there have been rare cases of adventitious agent detection in 

some licensed vaccines. A recent notable event was that of porcine circovirus 1 (PCV1) in a 

rotavirus vaccine [8–10]. Early episodes of contamination of biologicals (e.g., tetanus 

contamination of diphtheria anti-toxin) date back to the beginning of modern immunization 

and led to the establishment of regulatory oversight in the early 1900’s [11]. The discovery 

that early polio vaccine was contaminated by simian virus 40 (SV40) due to infection of 

rhesus monkeys resulted in a major manufacturing change in the cell substrate from primary 

rhesus monkey kidney cells to African Green monkey kidney cultures [12]. The detection of 

bacteriophage was detected in measles and polio vaccines, reverse transcriptase in measles 

and mumps vaccines, and the emergence of bovine spongiform encephalopathy (BSE) 

commonly known as “mad cow disease” in the 1980’s, and ultimately the human version 

variant Creutzfeldt-Jakob disease (vCJD) in the 1990’s, led to considerable regulatory 

deliberations, and also guidance on the use of bovine (and other) materials that could 

transmit transmissible spongiform encephalopathies (TSE’s) [12–15].

Viral vaccines are grown in cell cultures that may have been propagated in media containing 

bovine serum, and possibly used porcine trypsin for cell passage. Thus, in addition to 

archiving final released vaccine, there is also an argument for archiving the starting 

biological materials and of records that provide full traceability of biological materials used 

in vaccine manufacture. However, the issue of cell and serum archiving and their full 

traceability are not within the scope of this document at this point in time, and this paper 

will focus on the live recombinant viral vectored vaccine itself.
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Laboratory testing is used to demonstrate the absence of adventitious agents in the vaccine. 

In the event that contamination is found in a released vaccine after it has been marketed, 

samples obtained from vaccinees (e.g serum and PBMCs) may be used to evaluate whether 

the adventitious agent infected the vaccine recipient. Retrospective testing confirmed the 

presence of PCV1 DNA in Rotarix® since the initial stages of its development and in 

vaccine lots used in clinical studies conducted pre- and post-licensure [10]. Therefore, 

adventitious agents that fail detection using technologies available at the time a vaccine was 

originally produced and used, might at a later stage be detected by re-testing using emerging 

technology. In order for a new technology to be utilized to improve vaccine safety and detect 

past contamination events, samples of the vaccines and materials used in their production 

and samples from the vaccine recipients need to be collected and archived. Hitherto, the 

need for formal guidance on such vaccine sample archiving has been recognized but not 

fulfilled [15]. The Brighton Collaboration Viral Vector Vaccine Safety Working Group, 

formed in 2008 with voluntary representatives from academia, government and industry 

[16], has therefore summarized in this paper several prior major cases of vaccine 

contamination and provides points for consideration on sample archiving of live 

recombinant viral vector vaccines in humans. The Group recognizes that this document may 

be controversial, especially the cost implications, but feel it is important to stimulate the 

discussion on both the need for vaccine sample archiving and how this need might be met.

While this document focuses on live viral vector vaccines, relevant past experience with 

traditional viral vaccines are discussed and the lessons learnt may be usefully applied to 

novel vaccines, especially those that are live attenuated.

2. Historical context: past to future

History has shown that extensive testing for adventitious agents during manufacture of 

vaccines has prevented major contamination events and potential adverse clinical 

consequences. However, reports of product contamination have occurred periodically, 

mostly due to viruses present in biological reagents used for production (e.g. animal tissues 

or primary cell substrates, serum, or trypsin). The genomic and biotechnology revolution of 

the last decades has enabled the development, licensure, and production of many new 

vaccines and biologicals. The number of vaccine manufacturers who supply the global 

market has also been increasing, many of whom are from emerging economies [17]. While 

all vaccine manufacturers are regulated by their national health authorities, and those who 

supply UNICEF are pre-qualified by the WHO as meeting good manufacturing practice 

(GMP) standards [18], their capabilities differ and many need improved pharmacovigilance 

systems, such as standardization of safety reporting [19].

Since many if not most vaccines globally will likely continue to be made using biological 

reagents for the foreseeable future, the possibility of adventitious contamination cannot be 

totally excluded. Therefore, it is important to consider prospective sample archiving of 

vaccines and the use of new technologies and knowledge to test for contamination as they 

become available.
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To provide the context for and to better illustrate the need for this document, we have 

reviewed several notable contamination events and the resulting corrective regulatory 

actions. These events have also been reviewed in detail elsewhere. [12, 20, 21]

2.1 SV40 contamination of polio vaccine

2.1.1 Discovery of SV40 contamination in polio vaccine—SV40 is a monkey 

polyoma virus that was discovered in 1960 and can induce tumors in rodents and transform 

human cells in culture [22]. The Salk inactivated polio vaccine (IPV), first licensed in 1955 

in the U.S.A., was made in primary rhesus monkey kidney cells. It was already in wide use 

in 1961 when it was discovered that some of the vaccine lots were contaminated with SV40. 

At least 10–30 million persons were estimated to have been exposed to SV40-contaminated 

polio vaccine in the U.S.A. [23]. Testing of stored U.S. samples from vaccine lots produced 

in 1955 showed that the levels of SV40 were inconsistent across vaccine lots with some 

uncontaminated lots [24]. However, as samples of vaccine lots produced were not archived 

during 1955–1961, the period of likely SV40 contamination, no further testing was possible.

Since the early 1960’s, polio vaccines have been tested for SV40 infectivity in cell cultures. 

In a retrospective UK study, PCR was used to examine archived samples of oral polio 

vaccines (OPV) dating from 1966 to the time of the study (1999), including all vaccines 

used in the UK since 1980, for the presence of SV40 sequences [25, 26]. Of 132 materials 

examined, 118 were negative on initial testing and fourteen gave reactions which on further 

examination were attributed either to cross contamination during handling in the laboratory 

at the National Institute for Biological Standards and Control (NIBSC), UK or to non-

specific amplification; it was concluded that none of the samples contained SV40 sequences 

[25]. Some polio vaccines prepared from 1954 to 1961 were contaminated with infectious 

SV40. It has been assumed that all polio vaccines were SV40 free in the United States after 

1961 and in other countries after 1962. Following a WHO requirement [27] that was 

prompted by the detection of SV40 in some human tumors, [28] a multilaboratory study was 

conducted to test SV40 polio vaccines prepared after 1961. Vaccine samples from 13 

countries and the WHO seed were tested. All vaccines were SV40 free, except for vaccine 

from a major eastern European manufacturer whose inactivation procedure failed to 

completely inactivate SV40 in OPV vaccine seed stocks [29].

In Sweden, US-produced polio vaccine was used in 1957; but from 1958 on, only Swedish 

produced vaccine was used. Testing for SV40 began in 1961, including retrospectively of 

vaccines produced earlier, but there is doubt as to the validity of the negative results [25, 26].

Multiple epidemiologic studies have been conducted to assess the long term effects of SV40 

contaminated vaccine in humans [15]. More recently, there was concern that although SV40 

infection alone is unlikely to cause mesotheliomas and brain tumors in which SV40 genetic 

sequences had purportedly been detected, it may have acted as a cofactor in the pathogenesis 

of some tumors, with co-carcinogenicity between SV40 and asbestos being of particular 

concern [30]. However, in an extensive review by the US Institute of Medicine (IOM) in 

2002, it was concluded that these studies were “sufficiently flawed” so there was insufficient 

evidence to determine whether SV40-contaminated polio vaccine caused cancer or not [15].
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2.1.2 Regulatory actions taken after SV40 contamination of poliovirus—In 

1989, the WHO developed guidelines that required monkeys to be free of SV40, a practice 

already implemented in many countries. Validated nucleic acid amplification tests are 

generally now used to determine that virus seed lots used to produce viral vaccines are 

specifically free of SV40, along with a tissue culture test in Vero cells [5, 31]. Worldwide, 

manufacture of the vaccine was changed to African green monkey kidney cells, since this 

species is generally free of SV40. Authorities worldwide require all licensed vaccines to 

fulfill general safety, sterility, and purity requirements [32].

The 2002 IOM report recommended that federal agencies develop a ‘Vaccine Contamination 

Prevention and Response Plan’ which would include “strategies for routine assessment of 

vaccine for possible contamination; notification of public health officials, health care 

providers and the public if contamination occurs; identification of recipients of contaminated 

vaccines; and surveillance and research to assess health outcomes associated with the 

contamination” [15]. It also recommended considering a program to store samples from each 

vaccine lot approved for release in order to make it possible to test for contaminants if new 

detection methods become available or safety questions arise well after the vaccine has been 

used. Currently, manufacturers are required to store samples of each released lot only until 

one year following the expiration of that lot [32, 33].

2.2 Contamination of yellow fever vaccine

2.2.1 Avian retrovirus contamination of yellow fever vaccine—Avian leucosis 

virus (ALV) is an exogenous retrovirus that causes leukemia in chickens by means of 

insertional activation of cellular oncogenes [34]. The yellow fever (YF) vaccine comprises 

the 17D attenuated strain and is propagated in chicken embryos by inoculation of 7 to 9 day 

old embryonated eggs with the vaccine strain. The 17D YF vaccine became the main means 

of protection for travelers and those in the military during World War II [35] and was 

received by over one third of the US Army [36]. ALV contamination of the YF vaccine was 

first discovered in 1966 and concern arose about the possible oncogenic risk among former 

military vaccinees [36]. Waters et al. conducted a retrospective case control study, examining 

record-documented YF vaccination history during World War II among representative 

sample of 2,659 veterans who died of various specific cancers between 1950–1954 or 1959–

1963 and age-matched controls [36]. The study found no suggestion of association between 

the vaccine and cancers as classified, despite good statistical power. However, this study 

could only examine cancers with a latent period between 5 and 22 years, and failed to detect 

any elevated risk of hepatic neoplasia among vaccinees with prior history of serum hepatitis 

(see 2.3.2).

More recently, YF vaccines produced by three manufacturers were all found to have 

endogenous avian retrovirus (EAV) particles and endogenous avian leucosis virus (ALV-E) 

particles, which originate from ancient retroviral sequences and from a nonpathogenic ALV, 

respectively, that exist as a normal part of the chicken genome (discussed in 2.4 below). The 

absence of evidence of infection with ALV-E or EAV in 43 YF vaccine recipients suggests a 

low risk, if any, for transmission of these viruses [37].
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2.2.2 Hepatitis B virus (HBV) contamination of yellow fever vaccine—An 

epidemic of icteric hepatitis in 1942 affected approximately 330,000 U.S. Army personnel. 

This outbreak was linked to specific lots of YF 17D vaccine stabilized with human serum 

that retrospectively was found likely to have been contaminated by HBV [35, 38, 39]. The 

outbreak was controlled by shifting to a new serum-free YF vaccine. However, the link 

between the hepatitis and the YF vaccine was not proven until a 1985 study in which 597 

veterans who had been in the army in 1942 were interviewed and serologically screened. 

They were categorized in three groups: the first group included patients who had jaundice 

after having received the vaccine, and 97% of them were positive for antibodies to HBV. The 

second group contained those who had received the vaccine but did not fall ill, 76% of 

whom had positive HBV antibodies. The third group consisted of persons who received a 

serum-free vaccine and did not have jaundice; 13% of them had positive antibodies to HBV, 

similar to the prevalence in the general US population [35, 38, 39]. Together these results 

suggested that the YF vaccine transmitted HBV.

2.2.3 Regulation resulting from ALV and HBV contamination of YF vaccine—
Extensive testing is recommended to assure vaccine safety; only a few cases of unexpected 

viruses have occurred but they highlight the importance of adventitious agent testing for all 

biological materials that are used for vaccine production. Although there is no evidence for 

human disease associated with ALV, all countries now use seed virus prepared in specific-

pathogen free (SPF) eggs that are free from ALV as indicated by WHO [40, 41]. However, 

some permit the production of vaccine in embryonated chicken eggs that may contain ALV, 

but need justification due to cost and difficulty in procuring ALV-free eggs that would result 

in restricting availability of the YF vaccine. For this reason, the revised WHO Requirements 

for YF vaccine do not require ALV-free eggs. It should be noted that the WHO requirements 

regarding YF vaccines are not mandatory and approval for use is controlled by individual 

nations [38, 40, 42]. Accordingly, the vaccines, particularly with respect to their quality 

control, can vary.

HBV contamination in the early lots of YF 17D vaccine due to pooled human serum that 

was used as a stabilizer resulted in the elimination of human serum from YF vaccines.

2.3 Endogenous avian retroviral particles in MMR vaccines

In 1996, reverse transcriptase (RTase) activity, an enzyme typically associated with 

retroviruses, was detected in chicken cell-derived measles and mumps vaccines [43]. The RT 

activity was found to originate from the chicken embryonic fibroblasts used as a substrate 

for vaccine manufacture and was associated with virus-like particles containing endogenous 

retrovirus sequences (EAV) that are normally present in the host genome. Infectivity studies 

demonstrated these particles were non-infectious in a variety of human cell lines [42, 44, 

45]. Although EAV and also endogenous avian leukosis virus (ALV-E) RNA sequences were 

reported in MMR vaccines, there was no evidence of transmissibility of ALV and EAV 

sequences to MMR recipients [40]. Pre- and post MMR vaccination samples from 33 

children as well as samples from randomly selected blood donors were tested for ALV and 

EAV sequences. Despite the use of a highly sensitive PCR assay none of the samples tested 

were positive for either ALV or EAV sequences [40]. Various studies did not reveal any 
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adverse effects of the presence of these sequences or of RTase activity in chicken cell 

derived vaccines and the WHO determined that the overall benefit/risk balance remains 

highly in favor of continued use of the vaccines [12, 46].

2.4 PCV-1 contamination of vaccine

Porcine circoviruses (PCVs) are small non-enveloped virus containing a single-strand 

circular DNA genome virus. Two antigenically and genomically distinct variants exist in the 

swine population worldwide: PCV1 is non-pathogenic for pigs; PCV2 has been associated 

with various porcine disease syndromes [47].

PCV contamination of a vaccine was first discovered by Victoria et al. [8], while 

experimenting with new methods for detecting adventitious viral contamination. Using 

metagenomics and a pan-microbial microarray (versus a more traditional method of viral 

species-specific PCR), a panel of eight live attenuated vaccines that included oral polio 

virus, rubella, measles, yellow fever, human herpesvirus 3 (HHV-3), rotavirus, and 

multivalent measles/mumps/rubella were analyzed. In one orally administered rotavirus 

vaccine the metagenomics study uncovered a complete porcine circovirus-1 (PCV1) genetic 

sequence. Follow-up studies indicated that the number of PCV1 viral particles present in the 

vaccine was about the same as the number of rotavirus vaccine particles [48]. The 

contaminant was subsequently easily detected by virus-specific PCR; this had never been 

previously applied, because this agent, not being of concern to the swine industry, was not 

specifically included in the testing recommended for porcine viruses [49] and in tests 

recommended for extraneous agents [50]. No other microbial genetic sequences were 

detected in the study, that had not been previously uncovered in any of the vaccines.

In cell cultures, although PCV gene expression and replication takes place in human cells, 

the infection is non-productive [9]. Furthermore, PCR screening of a variety of different 

human cell lines, including human tumor cells, demonstrated that PCV1 was not generally 

prevalent in commercially-available cell lines [8]. Epidemiological data for humans show 

ambivalent results for serum antibody to PCV1 and current PCV1 knowledge is sparse and 

contradictory [51, 52].

2.4.1 PCV-1 in Rotarix®—The rotavirus vaccine contaminated with PCV1 described 

above was Rotarix®, an oral rotavirus vaccine manufactured by GlaxoSmithKline (GSK), 

first licensed in Europe in 2006 and US in 2008. Two doses of the vaccine are given to 

infants beginning at six weeks of age to protect against gastroenteritis due to rotavirus 

infection. The WHO estimates that rotaviruses are responsible for approximately 500,000 

deaths each year, with more than 85% occurring in low-income countries in Africa and Asia.

Upon being informed of the PCV1 contamination of Rotarix®, GSK rapidly initiated an 

investigation to confirm the source, nature and amount of PCV1 in the vaccine 

manufacturing process and to assess potential clinical implications of the finding. The 

investigation also considered their inactivated poliovirus (IPV)-containing vaccines, since 

poliovirus vaccine strains are propagated using the same cell line as the rotavirus vaccine 

strain. Results confirmed the presence of PCV1 DNA and low levels of PCV1 viral particles 

Klug et al. Page 7

Vaccine. Author manuscript; available in PMC 2016 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



at all stages of the Rotarix® manufacturing process. PCV1 DNA was not detected in the 

IPV-containing vaccine manufacturing process beyond the purification stage.

GSK subsequently notified regulatory health authorities about the discovery of PCV1 in 

Rotarix® and conducted additional studies confirming that PCV1 DNA was present in both 

the finished Rotarix® vaccine, in vaccine lots used in clinical studies, and in the source cell 

bank and master seed; the latter findings suggesting that the PCV1 contamination occurred 

during the early stages of vaccine development [10, 53]. The contamination was believed to 

have derived from the use of contaminated porcine trypsin in the development and 

manufacture of the vaccine.

Rotarix® is widely used globally in both developed and less developed settings. At the time 

of discovery of PCV1 contamination, ~100,000 children had received the vaccine during 

clinical trials and ~68 million doses had been distributed worldwide. Therefore, due to the 

potential public health impact, regulatory agencies further examined the state of the 

contamination.

2.4.2 Regulatory Actions Taken for PCV1 Contamination of Rotarix®

2.4.2.1 European Union: In the European Union, Rotarix® is available in all Member 

States, but is usually not part of their routine childhood vaccination schedules.

After GSK notified the European Medicines Agency of the unexpected presence of PCV1 

DNA in batches of Rotarix® in March 2010, its Committee for Medicinal Products for 

Human Use (CHMP) initiated a review. In view of the ubiquitous presence of the virus in 

food, the oral route of administration of the vaccine (mimicking the route of natural 

exposure), and the absence of both known pathogenicity and serious adverse reactions 

reported with the vaccine, the Committee concluded in March 2010 that the findings do not 

present a public health threat and vaccine usage should continue [52].

A formal review of Rotarix® was also initiated by the European Commission, which 

concluded that the vaccine continues to have a positive benefit-risk balance and that the 

presence of a small amount of PCV1 viral particles does not present a risk to public health. 

However, since PCV-1 should not be present in the vaccine, it was incumbent upon the 

manufacturer to propose measures of manufacturing the vaccine free of the virus, although 

such measures would take time to implement [53].

2.4.2.2 United States- FDA: An initial review of data on the presence of DNA from PCV1 

in Rotarix® was performed in March 2010. The FDA similarly concluded that there was no 

evidence that the presence of PCV1 DNA in Rotarix® posed a safety risk and confirmed the 

excellent safety record of the vaccine [10]. Nevertheless, the FDA recommended that 

clinicians temporarily suspend use of vaccine until the Agency learned more. On 14 May 

2010, after discussions in the FDA Vaccines and Related Biological Products Advisory 

Committee, the suspension of the use of Rotarix® was removed. The decision was based on 

an evaluation of information from laboratory results from the manufacturer and the FDA’s 

own laboratories, a thorough review of the scientific literature, and input from scientific and 
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public health experts, including members of the FDA’s Vaccines and Related Biological 

Products Advisory Committee that convened on May 7, 2010 to discuss these vaccines.

The Agency’s decision was further based on the strong safety records of the vaccine, the 

lack of evidence that PCV1 or PCV2 cause infection or disease in humans, and the 

substantial benefit of the vaccine in preventing death in some parts of the world and 

hospitalization for severe rotavirus disease in the United States. These benefits outweighed 

the theoretical risk posed by the presence of PCV1 in the vaccine [54].

Since the investigation into the PCV1 contamination of Rotarix® by GSK and federal 

agencies, PCV1 has continued to be researched and manufacturing procedures have been 

further developed. It was found that PCV1 could infect human hepatocellular carcinoma 

cells. Although the author emphasizes that the connection between this evidence and vaccine 

safety is unclear, it does demonstrate that a negative cell culture may not give the full scope 

of the contaminant’s capabilities [54]. The presence of PCV1 early in the vaccine production 

process has also triggered further research on contaminants in cell culture, and material used 

in the manufacturing process such as bovine serum and trypsin [55]. Furthermore, research 

is being done to improve the manufacturing procedure by creating a new quantitative tool to 

detect residual porcine DNA [56].

No PCV1 DNA was detected in a separate and widely used rotavirus vaccine, Rotateq™, 

manufactured by Merck, although sensitive assays detected small fragments of PCV2 

genomic DNA. It was determined that these were of no consequence to the safety of the 

vaccine and no regulatory action was taken.

3. Existing guidelines to assure viral safety

Strict measures are currently in place to assure the safety of vaccines as well as all other 

biological medicines. For example, the US Code of Federal Regulations defines product 

safety as “the relative freedom from harmful effect to persons affected, directly or indirectly, 

by a product when prudently administered, taking into consideration the character of the 

product in relation to the condition of the recipient at the time [32]”. The two critical 

components of safety are sterility, which is defined in 21CFR600.3(q) as “freedom from 

viable contaminating microorganisms”[32], and purity which is defined in 21CFR600.3(r) as 

the “relative freedom from extraneous matter in the finished product, whether or not harmful 

to the recipient or deleterious to the product to meet the requirements of 610.13” [55]. 

Vaccines are currently tested using a variety of assays to demonstrate safety and purity, 

including specific and general assays for detection of potential contaminants, and there may 

be a need to consider new technologies that become available for broad detection of 

unknown agents as well.

Nevertheless, while materials and culture processes leading to medicinal products are tested 

to demonstrate the absence of adventitious agents, there might be occasional unintended 

introduction as demonstrated by the PCV1 situation. Reports indicate that adventitious agent 

contaminations are more frequently caused by bacteria or mycoplasmas, which are more 

easily detected, than by a virus. The safeguards against viral contamination include 
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implementation of GMP, thorough testing or use of certified raw materials, viral safety 

evaluation at critical production stages (e.g. virus seeds and virus harvests) and validation of 

the viral clearance capacity (if any) of the downstream purification process [57].

National and international regulatory authorities provide guidelines on the manufacturing, 

standardization and quality control of medicines [32]. These are subject to continuous 

review and modification to reflect the current state of science and technology.

However, for live viral vaccines, in-process adventitious agent inactivation steps are not part 

of the manufacturing process, since these steps would most likely compromise vaccine 

viability and immunogenicity. While inactivated vaccines include a vaccine virus 

inactivation step as part of the manufacturing process, the ability of that step to inactivate 

potential adventitious agents is often not evaluated, particularly for products that have been 

on the market for some time. For newer or investigational vaccines, an inactivation step(s) 

that assesses the ability to inactivate a variety of agents should be part of their manufacture. 

The safety of live viral vaccines has to be assured by direct testing of the vaccine and of 

materials used in its manufacture, and to use control cell cultures for demonstrating that 

batches of cells or eggs cultivated in parallel to those used in vaccine manufacture but not 

infected with the vaccine virus, show no signs of infection by other agents. It is important to 

include a risk assessment process in the overall viral control strategy used during the 

manufacture and testing of vaccines. The risk assessment is necessary to identify potential 

sources for entry of adventitious agents into the vaccine, and to develop a strategy to 

mitigate the risk of adventitious agent introduction. The risk assessment can be used to tailor 

the biosafety testing that is performed on raw materials, vaccine seeds, vaccine bulk 

materials and final product [58]. This is an evolving field and regulatory agencies are 

developing regulations regarding using new detection technologies to evaluate future 

vaccines for adventitious agents.

4. Methods for Developing Proposed Considerations

A Brighton Collaboration Viral Vaccine Vector Safety Working Group was formed in 2008 

with about 30 expert members. The group consists of persons with expertise in virology, 

regulation and vaccine safety, and meets via monthly conference calls. The development of 

this considerations paper was based upon literature review, a systematic review of current 

regulations from both Europe and United States and group consensus. Outside experts on 

sample archiving were invited to contribute as needed.

4.1 Lessons Learned from Past Contamination Events

Contamination events have invoked considerable discussions in industry and regulatory 

agencies leading potentially to implementation of risk mitigation strategies or formulation of 

new recommendations [59]. However, the issue of comprehensive storage or archiving of 

vaccine samples so that the origin of any future contamination event can more easily be 

traced and corrective action taken has not been addressed. As the past examples of 

contamination events demonstrate, it is important to archive samples consistently for an 

extended period of time so as to allow future researchers to determine the extent and impact 

of any contamination. Some potential adverse events induced by an adventitious agent (e.g. 
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cancer) can occur many years after vaccination and the period of archiving should reflect 

this scenario. The ALV contamination of the yellow fever vaccine was examined using 

available information on vaccinations, which came from a cohort that was not likely to be 

vulnerable to infection or to be immunocompromised, and so is not easily generalizable. 

With the HBV contamination of the yellow fever vaccine, there was a problem with 

obtaining historical samples and it was a challenge to use these samples due to the lack of 

guidance for sample archiving at the time they were prepared for storage. As occurred 

during the investigation of possible adverse events resulting from SV40 contamination of the 

polio vaccine, existing samples were not representative of the distribution of the vaccine and 

epidemiologic studies able to be performed with existing samples were flawed, preventing a 

concrete conclusion [15]. The existing samples were also precious, which led to problems of 

establishing acceptable protocols to extract DNA, and difficulties may have resulted in some 

initial cross contamination. The extended storage of vaccine samples would assist future 

researchers to identify contaminated vaccine lots, and so determine a more accurate relative 

risk for specific populations.

The value of a centrally organized sample archive was illustrated during a relatively recent 

investigation of 1976–77 swine influenza vaccine to assess if the still unexplained elevated 

risk of Guillain-Barre syndrome (GBS) encountered with this vaccine was due to vaccine 

contamination by Campylobacter, a now known cause of GBS and endemic in poultry, from 

which eggs used for influenza vaccine production are sourced [15, 60]. By the time this 

hypothesis was formulated in 2006, however, some thirty years after vaccine production, 

there was extreme pessimism that vials of the original vaccine from different manufacturers 

and lots kept frozen throughout, could be found. Fortuitously, after considerable effort and a 

nationwide search, influenza researchers at Baylor University were found to have such an 

archive, thereby allowing this hypothesis to be tested, and ultimately rejected. These 

experiences highlight the need for the development and implementation of standard 

procedures for sample archiving, including guidance in the collection, preparation and 

storage of samples.

4.2 Potential safety concerns related to novel viral vaccines

The development of some novel viral vaccines have necessitated the use of human 

tumorigenic and tumor-derived cell substrates, which could pose additional safety concerns 

related to the potential presence of unknown tumor viruses and latent viruses that may not be 

detected by the currently recommended assays [61]. Additionally, the use of large virus 

vectors can provide a target for endogenous retrovirus integration and amplification in the 

vector virus [62–65]. Therefore, advanced nucleic acid technologies with broad virus 

detection are being investigated for cell substrate characterization and may also be useful for 

characterization of the virus seed or products.

5. Avoidance of Adventitious Agents

The production of live virus vaccines involves propagation of the vaccine virus in a suitable 

cell culture system, possible cell disruption for maximal yield of virus and, if necessary and 

if possible, purification of the virus. For biological products such as live virus vaccines, the 
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introduction of an inactivation step(s) for adventitious agents as part of the downstream 

manufacturing process is not possible, since such a step is likely to compromise the 

immunogenicity of the vaccine virus. Thus the use of well characterized cell bank systems 

and qualified reagents for production is an even more important step to assure vaccine safety 

compared with their use for other vaccines or biological medicines. Progress has been made 

in the development of serum-free media for cell growth needed for the production of viral 

vaccines. However, the risk of introduction of adventitious agents through the use of other 

animal-derived substances such as trypsin during the production process remains. Use of 

gamma-irradiated or UV-treated reagents is also being considered in some cases when there 

is no adverse effect on the cell substrate. The risk of adventitious agents is reduced by 

current viral safety testing regulations and measures that recommend redundancy in testing 

using different assays and at different stages in manufacturing. Therefore, although the risk 

of adventitious agent introduction using primary cell substrates such as eggs and primary 

tissue cultures is higher than using a well characterized cell line, extensive and redundant 

testing provides confidence for their deployment during vaccine manufacture. Although 

complete elimination of animal derived reagents from the manufacturing procedure leads to 

a substantial reduction of the risk of contamination, the risk cannot be completely eliminated 

since animal-derived raw materials might be used in the production process of non-animal 

derived raw materials, such as enzymes to digest proteins to peptides and amino acids. 

Additionally, some cell substrates may not adapt to serum-free growth conditions. Further, it 

may be possible for viral contamination to arise from chemical reagents for growth medium 

preparation as illustrated by the minute virus of mice (MVM) contamination incident in the 

manufacture of a biopharmaceutical product [66].

On the other hand, advanced nucleic acid based technologies that have demonstrated success 

for detection and discovery of (new) adventitious agents such as virus microarrays, 

massively parallel or deep sequencing and broad range PCR combined with mass 

spectrometry could further contribute to the safety of biological products including vaccines. 

These new technologies still need to be validated for their intended use, determination of 

their performance parameters and how they can be applied to the safety of biological 

medicines. Efforts are ongoing to obtain data for scientific-decision making by regulators 

and industry regarding the use of the new technologies for evaluation of biological products. 

This was the focus of the 2013 PDA/FDA meeting on Advanced Technologies for Virus 

Detection in the Evaluation of Biologicals: Applications and Challenges [67]. Data was 

presented on the current use of the technologies for investigation of potential contaminants 

and characterization of cell substrates. Challenges for their routine use were identified plus 

ongoing group efforts were described. This meeting extended the discussions of the 

September 19, 2012 FDA Vaccines and Related Biological Products Advisory Committee 

(VRBPAC) on the use of human tumor cells for vaccine manufacture, which supported the 

use of the new technologies along with the currently recommended assays for detection of 

known and unknown viruses in novel cell substrates [68].

6. Proposals for Archiving Vaccine Samples

Comprehensive archiving samples of vaccine batches as well as the cell lines used for 

production would allow future retrospective analysis of vaccines by new (and presumably) 
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improved technologies. In addition to the retention of physical samples, in order to 

investigate the impact of a contamination with an adventitious agent, a system of traceability 

for the used batches is proposed and should be in place. Retained samples from the seed lot 

and the cell bank, as well as of raw starting materials, would allow future scientists to 

determine the source of the contamination and who may have been exposed. In the conduct 

of clinical trials, samples of patients’ sera and peripheral blood mononuclear cells (PMBCs) 

taken prior to vaccination and at dedicated time points after vaccination should be stored in 

order to allow for investigation of the potential for human infection with any adventitious 

agent transmitted by the vaccine.

6.1 Type of Storage

Vaccine samples should be frozen rapidly and stored below −70 °C to enhance retention of 

the viability of a live viral contaminant. For the purposes of future investigation of 

adventitious agents in cells, these should similarly be stored below −70 °C, although to 

retain long-term viability of cells, storage in the vapor phase of liquid nitrogen is required. 

Samples should be stored in suitable containers but preferably in the original containers to 

avoid any possibility of contamination being introduced during preparation for storage. A 

system should be in place for identifying and cataloguing stored samples.

6.2 Length of Sample Archiving

Current US and EU regulations [32, 33] require manufacturers to retain a vaccine sample for 

one year post expiration of the vaccine (at the temperature that is indicated for the specific 

vaccine), vaccine ingredients that are used in the process, and 5% of each lot from the Phase 

I and II clinical trials for two years past the expiry date of the vaccine. However, in order to 

allow adequate retrospective testing for adventitious agents in vaccines in future years, past 

experience suggests that samples should be archived ideally for a minimum of 25 years.

6.3 Samples for storage

For long-term archiving purposes it is proposed that for each batch of investigational or 

developmental (i.e. those used in pre-licensure studies) and commercial (i.e. licensed) 

vaccine, at least 10 ml of unformulated bulk and at least 10 vials/syringes of the final 

vaccine should be archived. Consideration has to be given to the quantity of vaccine likely to 

be required for analysis by any particular technique [32, 33]. This can be assessed for 

current technologies but is difficult to assess for future technologies; quite simply, the more, 

the better. Since regulatory laboratories are unlikely to have the resources to enable them to 

perform such archiving, this would have to be undertaken by the manufacturer of the 

vaccine. This however would probably require a change to the regulations and is unlikely to 

be achieved easily. This would not preclude a regulatory laboratory storing samples on an ad 
hoc basis and there may be room for negotiation between a government agency and the 

manufacturer as to where and by whom samples are archived. If a company were to dissolve, 

the company would be responsible for the transfer of the samples to a competent regulatory 

authority for archiving.
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6.4 Financial Responsibility

The purpose of this document is to provide technical considerations for guidance and not to 

determine financial responsibility for the cost of sample archiving. However, it is recognized 

that the financial burden for appropriate storage of samples above current regulatory 

requirements would be substantial, possibly even prohibitive. Despite this, the value of 

archiving material should not be underestimated and attempts should be made to establish a 

robust archiving system beyond that required by current regulations [32, 33]. Indeed, novel 

viral vectored vaccines that are “live” and have limited processing (i.e., no viral clearance 

steps) could be prioritized to follow the proposals provided herein as they could be riskiest 

to have a contamination.

6.5 Future Needs

As noted earlier, there is a need for guidance on archiving of cells used to propagate virus 

vaccines and of records that provide full traceability of biological materials used in vaccine 

manufacture. Another key unresolved issue is the ability to track recipients of a 

contaminated vaccine accurately. Unlike efficacy, the safety of a vaccine usually cannot be 

measured directly; relative safety can usually only be inferred indirectly from the relative 

absence of multiple specific adverse events that have been measured. Either the discovery of 

an adventitious agent in a vaccine or the occurrence of adverse events in vaccinees can 

prompt an investigation of the vaccine. In fact, there is an ongoing root cause investigation 

for the recent identification of Mycoplasma hyorhinis in an investigational pox vector 

vaccine [69]. Adverse events get linked to specific vaccine exposures through 

epidemiological studies, and the possibility of contamination may be evaluated by laboratory 

testing with in vitro and in vivo studies, using conventional methods and new technologies, 

and through genetic sequencing. Epidemiological studies for determining relative risk are 

possible, however, only if there are records of who were exposed to the contaminated 

vaccine and who were not. While progress in developing computerized immunization 

information systems with tracking of vaccine manufacturer and lot number have been made 

in the U.S. [13], less progress has been made in the ability to track similar information in 

vaccinees in other countries [70]. Participation in voluntary centralized vaccination records 

in Canada has been made available through the launch of a phone app “ImmunizeCA app” in 

September 2014 [71], whilst in the USA, and effective June 10, 2015, applicants of 

biological products including vaccines are required to submit Lot distribution reports to the 

FDA according to amendments in 21CFR600.81 [72].

In addition to sample archiving, other aspects of the 2003 IOM recommendations for a 

“Vaccine Contamination Prevention and Response Plan’ remain undeveloped, such as 

“strategies for routine assessment of vaccine for possible contamination; notification of 

public health officials, health care providers, and the public if contamination occurs; 

identification of recipients of contaminated vaccines; and surveillance and research to assess 

health outcomes associated with the contamination”[15]. Given the large proportion of the 

human population exposed to vaccines annually, the large number of vaccine manufacturers 

and the diversity of their sourcing, the need for such a plan remains urgent.
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